
CHANGEREFINERY: Assisted Refinement of
High-Level IT Change Requests

David Trastour
HP Laboratories, UK

david.trastour@hp.com

Robert Fink, Feng Liu
Ludwig-Maximilians-Universität München

robert.fink@campus.lmu.de, liufeng@nm.ifi.lmu.de

Abstract—The IT Infrastructure Library (ITIL) is a set of best
practices that are widely accepted for IT service management.
Change management is a core ITIL process that oversees the
handling of IT changes and ensures that all change requests
are carefully prioritised and authorised, that business and
technical impacts are understood, and that required resources
are available. During this process, IT operations teams first
need to understand the change requests that are generated by
business and IT personnel. They must then develop and execute
concrete IT change plans for each request. The increasingly
large and complex IT environment (people, technology and
processes) presents a number of challenges to the efficient and
effective design of the ever higher volume of IT changes: Change
requests can be ill-defined, company policies and best practices
are not systematically captured and enforced, manually designing
changes is time consuming and error-prone. To overcome these
issues we propose in this paper an automated planning based
approach to change design. We illustrate how change knowledge
can be represented to encode best practices and how to refine
high-level change requests into concrete plans. A prototypical
implementation shows the feasibility of the approach and demon-
strates the concept of a change catalogue that can be presented
to business users.

Index Terms—IT Change Management, Assisted Design, Au-
tomated Planning

I. INTRODUCTION

In order to adequately support businesses that evolve at
an increasing pace, IT organisations, systems and processes
must constantly be adjusted: IT must introduce new business
services, and enhance or modify existing ones. Technology
considerations are also a source of IT changes, for instance
by adopting a new technology that is more cost efficient
or by performing required maintenance on a hardware or
software component. For these reasons, IT organisations must
cope with an increasing large number of changes. The IT
Infrastructure Library (ITIL) [1] is a set of widely adopted [2]
best-practices for IT service management that defines common
vocabularies and processes for service strategy, service design,
service transition, service operation and continual service
improvement. To ensure an efficient and prompt handling of
all IT changes, ITIL recommends implementing a Change
Management process to funnel all Requests for Change (RFCs)
to a Change Advisory Board (CAB). The Change Management
process ensures that RFCs are carefully evaluated, prioritised
and authorised, that their business and technical impacts are
understood, and that they are scheduled in order to meet human
and technical resource requirements.

While implementing ITIL change management goes some
way towards a more effective handling of IT change, a high
volume of changes can still put a strain on IT operations team.
We have observed in some HP customer sites volumes of
more than one thousand change requests per day. Without au-
tomation, decision-support and knowledge management tools,
handling such volumes of changes can become problematic,
as bottlenecks and inefficiencies appear in the process.

In this paper, we concentrate on the change design step, in
which one or several IT practitioners develop a detailed plan of
action to deploy the change onto the IT infrastructure. To the
best of our knowledge, designing IT changes is still a manual
process in practice, and no tool support exists that can assist
an IT practitioner in deriving a detailed plan of action from
the textual description provided in the RFC.

We have identified four shortcomings in this current state of
affairs. First, there can be an information impedance mismatch
between change requesters and IT practitioners. In a survey
conducted to identify the main issues faced by change man-
agers [3], the problem of ill-defined RFC was ranked among
the three most important challenges. Indeed, RFC can be raised
by technicians, for instance for the remediation of a security
risk, but also by business users, for instance to change the be-
haviour of a business service. While technical requesters may
have enough knowledge and technical vocabulary to describe
the RFC to the appropriate level of details, this is often not
the case for a business requester. The information provided
by the business user tends to be incomplete and/or unclear for
the IT technician. The second problem we have recognised
is that best-practices and IT policies are usually stored in
unstructured formats (documents, web pages, presentations,
or emails) and there is no systematic way of capturing this
knowledge and making sure it is reused. The third problem
we have identified is that manually designing changes is a
time consuming activity that puts of lot of strain on the IT
operations teams; this is exacerbated if the design process
requires multiple iterations between the requester and the IT
practitioners to clarify the meaning of the change request.
Finally, manually designing change plans is error-prone since
the validation needs to be done manually.

In the next section, we show that several aspects of change
management have been addressed in the literature, but much
still needs to be done to address these four problems in IT
change design.



In this paper, we present a solution for assisting in the re-
finement of high-level change requests into concrete actionable
change workflows. Our solution introduces the notion of a
change catalogue which provides a clear interface between
change requesters and IT practitioners and reduces the need
to rely on textual descriptions. Best practices are captured and
reused in the decomposition of change requests into change
workflows. Finally, corporate IT policies are modelled and
enforced in change designs. Our solution is evaluated through
the use of CHANGEREFINERY, a prototypical implementation
of our assisted change design system.

The remainder of this paper is organised as follows. The
next section examines how our approach relates to existing
work in the fields of IT change management and of appli-
cations of automated planning techniques. We then introduce
the concept of a change catalogue to present to change re-
questers and describe the information models to encode change
knowledge (Section III). Section IV presents the architecture
of the solution and details the algorithms used in the refine-
ment of high-level change tasks. Section V describes details
and experimental results of our prototypical implementation,
CHANGEREFINERY. Finally, we conclude by presenting our
future work intentions.

II. RELATED WORK

Most IT management software vendors provide some sup-
port to implement the change management process, as laid
out in the ITIL Service Transition book [4]. Process manage-
ment tools such as HP Service Manager or BMC Remedy
Change Management help to track the evolution of a change
in all phases of its lifecycle, but they provide no decision-
support functionality for change design. In another class of
products, orchestration capabilities for automated provisioning
have been developed in solutions such as HP Operations
Orchestration or Tivoli Intelligent Orchestrator. While these
solutions provide graphical workflow editors, all decisions
made during the design process are left to the technician using
the editor, and no assistance is provided.

With CHAMPS (Change Management with Planning and
Scheduling), Keller et al. [5] produced the seminal work for
automation and optimisation in change management. In this
work, change design was inferred from software and hardware
dependencies, and was primarily targeted at software installa-
tion and de-installation. Knowledge reuse and the concept of
high-level change requests were not the topic of this work.

Cordeiro et al. [6] have proposed CHANGELEDGE, a con-
ceptual solution for the automated refinement of preliminary
change plans into actionable workflows. After defining a
conceptual model, CHANGELEDGE uses the concept of change
templates to capture and reuse change knowledge in the design
of recurrent or similar IT changes. CHANGELEDGE and our
solution, CHANGEREFINERY address different issues in the
problem of IT change design. First, CHANGELEDGE requires
a skilled technician to understand the textual description found
in the RFC and to draft a preliminary plan. It does not address
the information impedance mismatch problem between change

requesters and IT practitioners mentioned in section I. Also,
CHANGELEDGE does not provide mechanisms to encode best
practices, our second challenge; it generates any sequence of
steps in which dependencies and constraints between activities
are satisfied. There are two issues with this approach: on
one hand, it assumes complete and accurate knowledge of
the constraints and dependencies on the IT model, and on
the other hand, IT practitioners are usually only comfortable
using tried and tested methods and would only trust a small
subset of such automatically generated workflows. Finally,
while CHANGEREFINERY and CHANGELEDGE solve different
problems, they can be seen as complementary: the former
assists an IT practitioner in refining high-level change tasks,
the latter automates the generation of low-level workflows. We
will explore how to combine the two approaches in a future
work.

Other aspects of change management such as change
scheduling have been proposed. Sauvé et al. [7] take the
example of change scheduling to demonstrate linkage mod-
els between IT availability metrics and business objectives.
Rebouças et al. [8] use the linkage model from [7] and for-
malise the problem of business-driven scheduling of changes,
in which changes need to be assigned to maintenance win-
dows. Trastour et al. [9] go one step further by breaking
down changes into the elementary activities that compose them
and by providing a scalable solution to the change scheduling
the problem. Finally, Setzer et al. [10] studied the impact of
IT changes onto business processes and considered stochastic
durations. The investigation of these business impact analysis
techniques for the design of changes as well as the integration
of planning and scheduling of changes is left for future work.

In the area of IT infrastructure design, Ramshaw et al.
[11] propose a constraint programming approach to design IT
infrastructure from SLA requirements. The main difference
with what we propose here is that [11] focuses on generating
IT system configurations that satisfy capacity and performance
requirements, while we are interested in the processes for
transforming existing IT systems.

Finally, the general field of automated planning [12], an area
of artificial intelligence, provides techniques to generate plans
of actions meeting certain objectives. This field has evolved
from classical planning to more specialised forms of planning.
In particular, Hierarchical Task Network (HTN) planning [12],
[13] is well suited for domains in which plans are known to
exhibit a hierarchic structure; the planning algorithm is then
guided by predefined hierarchical decomposition templates.
Although automated planning research has had successes in
many domains (Mars exploration [14], crisis intervention [15],
workflow planning in Grid computing [16], analysis and life
cycle management of plans [17]), to our knowledge, it has
not been applied to change design.Our proposed assisted
design solution adopts HTN planning principles on knowledge
representation and plan generation.



III. INFORMATION MODEL FOR CHANGE PLAN
REFINEMENT

We present our solution in two steps; in this section we
describe the information model used to represent change
knowledge, and in the following section we will present the
architecture of our solution and the reasoning techniques for
assisted change design that make use of this knowledge.

To minimise IT service disruptions and the need for further
corrective changes, IT practitioners favour to use procedures
that are fully understood and have previously been tested.
In our experience, even within large IT organisations, these
procedures can be seen as change recipes, since they are
rarely formalised; they may be documented in unstructured
documents shared within workgroups, or implicitly memo-
rised by managers or technicians. These recipes are typically
scattered within the IT organisation, and a single change
may involve recipes from different IT workgroups, such as a
database workgroup or a Unix workgroup. Moreover, change
recipes can be concrete (e.g. the steps to build a Windows
2003 web server to corporate standards), or abstract (e.g.
the steps to consolidate a set of servers in a data centre)
and would require further refinements to obtain an actionable
workflow. We propose to formalise these change recipes in
the form of best practices for change design to assist IT
pratitioners in producing actionable change plans. In addition
to these, IT practitioners must also consider corporate IT
policies. Such policies can impose constraints on the possible
configuration of the IT infrastructure (e.g. all external facing
web servers must have a firewall) and on the processes used
to perform changes (for instance, all changes affecting the
payroll system must be authorised by the financial controller).
Finally, IT practitioners must take into account the state of IT
Operations, i.e. the state of the IT infrastructure and of the
IT processes they need to interact with in order to carry on
their work. A Configuration Management Database (CMDB)
is typically used to model and store infrastructural information
and interdependencies between all entities (configuration items
or CIs) that potentially take part in the execution phase of a
change. Other tools, such as a service management tool, track
the state of IT processes.

Fig.1 depicts the main use case our solution is addressing. A
business user, the change requester, has limited IT knowledge
and needs to raise a request for change (RFC). Instead of
relying solely on textual description and being confronted with
the problem of ill-defined RFC mentioned in Section I, the
change requester browses the change catalogue, selects one
of the high-level change tasks presented to her and fills in
the required parameters. The RFC is later handled by one or
several IT practitioners to be designed, documented, tested
and implemented. Using our solution, the RFC is continuously
refined into smaller and smaller change tasks, until eventually
an actionable workflow is generated. The output uses best
practices from various IT workgroups and complies with all
corporate IT policies. A change knowledge manager role
is responsible for maintaining the change catalogue and for

Change Plan
Designer

Change best practices

IT policies

IT operations model

Select high-
level goal

Change
requester

Refine

IT
practitioner

Change
knowledge
manager

Change plan

Fig. 1. Assisted design use case

interacting with IT practitioners to ensure that best practices
for change design are captured and maintained.

Having presented the different sources of change knowledge
and our assisted change refinement use case, we now describe
our approach to provide an integrated view on change knowl-
edge. We first present the IT operations model, the change
catalogue and best practices model, the main contribution of
this information model, and finally the IT corporate policies
model.

A. IT Operations Model

Our solution requires an information model representing
concepts from IT Operations that are used in the definition of
change activities. We assume that an object-oriented formula-
tion exists and that all classes have a root class, in order to have
a generic way to refer to all such IT concepts. The model may
represent hardware and software components, IT technicians
and their skills, or steps in IT processes. For the purpose of this
paper, we have chosen to instantiate the IT Operations model
as a subset of the Common Information Model (CIM) [18].
Being an object-oriented framework, CIM defines hierarchies
of configuration items through specialization and dependencies
between items by associations, compositions and aggregations.
The root class of the CIM model is ManagedElement.

The remainder of this paper will present a J2EE sce-
nario (Fig.5 and Fig.6) featuring hierarchies of hardware
components (web servers, load balancers, database servers),
different kinds of databases, J2EE application containers, J2EE
applications connected to databases, JDBC resources, and
load balancer applications. Additionally, in compliance with
the ITIL guidelines for configuration management systems,
technicians and their respective skills in operating the above-
mentioned entities are also included. This J2EE scenario can
be extended to support other domains or more complicated
infrastructures by adding new classes and dependencies from
CIM. Alternatively, the CIM model could be substituted by
models from commercial CMDB products.

B. Change Catalogue and Best Practices Model

We propose a model whose aims are on one hand to provide
a clear interface between change requesters and IT practi-
tioners, and, on the other hand, to formalise the sets of best
practices for IT changes. Fig.2 depicts a UML representation
of this information model.



We introduce the notion of hierarchically decomposable
change Tasks. In our model, change Tasks convey the meaning
of what will be done, not how it will be done. For instance,
deploying a web server is a Task that could be implemented in
many ways, depending on the expected traffic or on whether
the server will be externally facing. A business user will
typically not be concerned with the technical implementation
details of a change, and should only have to deal with change
Tasks. Change Tasks can represent activities at different levels
of abstraction, from high-level Tasks that a business user may
ask for (e.g. altering a business process in an SAP system) to
low-level technical Tasks (e.g. installing an Oracle database).

To be able to represent workflows supporting parallel and
sequential actions, our model includes TemporalConstraints
which provide qualitative ordering constraints between Tasks.
A TaskNetwork is hence a partially ordered set of Tasks.

The ChangeCatalogue is the subset of predefined Task
networks that an IT organisation chooses to expose to its users.
We propose the change catalogue as analoguous to the ITIL
service catalogue [4]: it contains a set of high-level IT changes
that are available to change requesters. An RFC hence contains
an instance of a Task network.

A change Task can have any number of Variables. Variables
have a name, a type, which is either a data type (e.g. an
integer representing a number of users) or a class from the IT
operations model (the WebServer class), and an instance value.
Values for all variables present in the original Task network
(from the RFC) must be specified by the change requester.
As we will see in the following section, the change design
process consists of recursively refining change Tasks into sub-
tasks until a concrete workflow is obtained. Variables are then
used to pass parameters between a Task and its sub-tasks.

Borrowing from the Hierarchical Task Network (HTN)
planning paradigm [12], a change Task can be realised by one
of two Refinements, an Operator or a Method. Operators are
atomic activities that have known Effects on the IT Operations
model. For instance, Operators accomplishing the Install-
Databse Task in Fig.6 have the effect of adding a Database
CI to the Knowledge Base. Methods encode the best practices
or recipes mentioned earlier, and are the mechanism we use
to refine a Task into further lower-level Tasks. In our model,
several Operators or Methods could implement the same Task,
leading to different effects and Task decompositions. For
instance, the InstallApplication Task in Fig.5 could be decom-
posed by the shown simple sub-workflow (DeployApplication,
InstallDatabase, AddDbResourceToContainer), but one could
also define an alternative Method to refine the same Task, for
instance with additional authorisation and backup steps.

Because not all Refinements (Operators and Methods) may
be applicable for a given Task at all times, Refinements are
guarded by a Condition on the IT Operations model. The
Refinement can be used only when the Condition is satisfied.
For example, every Refinement of the Task AddContainerToLb
in Fig.5 requires the existence of a J2eeContainer and a
LoadBalancer CI in the Knowledge Base.

ChangeCatalogue

TaskNetwork Task

TemporalConstraint

RefinementPrecondition Variable

Method Operator

Effect

∗
∗

2∗

∗ ∗
∗

∗

∗

1

subtasks

Fig. 2. Change Catalogue and Best Practices Model

C. IT Policies

Change plans typically have to comply with corporate poli-
cies resulting either from business requirements, service level
agreements (SLA) or technical considerations. We identify
two different classes of policies which constrain the change
plan design process. First, policies may qualify the permitted
states of the IT infrastructure, for example by proscribing
the use of certain software versions and by only allowing
certain hardware and sofware combinations. Following the
ITIL recommendation, this set of policies should be made
available in the Definitive Media Library [1]. The second type
of policies addresses the logical and temporal structure of
change plans. Examples of such policy could be the obligation
to perform systematic backups before certain classes of change
Tasks or the need to perform changes during maintenance
windows specified in an SLA.

Our solution is agnostic to the choice of the policy language
(e.g. RuleML [19]). The only requirement is the ability to
express rules on the IT operations model and on the change
catalogue and best practices model.

IV. ASSISTED REFINEMENT OF CHANGE TASKS

Having described the information view of our approach, we
now present the conceptual architecture, give the requirements
for the main components of the solution, and explain the al-
gorithm used to refine high-level change Tasks into actionable
workflows.

Fig.3 depicts the architecture of our solution. The Change
Planner is the core component that compiles change plans
from the various information repositories. The IT Knowledge
Base holds the IT Operations model and acts as a simulation
environment for the Planner. The Change Catalogue repository
holds the change catalogue and best practices model and in-
cludes Tasks, Methods and Operators. The Temporal Reasoner
is used by the Planner to enforce temporal consistency while
building the plans. Finally, the Policy Repository and Engine
store and enforce the IT corporate policies.

A. IT Knowledge Base

The IT Knowledge Base component stores the IT Oper-
ations model and acts as an abstract interface between the
Planner and different types of IT infrastructure and operational
databases. We now describe the functionalities of the IT



CMDB Asset Mgm. Service Mgm.

Change Planner

Change Design UI

IT Knowledge Base

Change Catalogue

Temporal Reasoner

Policy Engine

Policiy Repository

assert()
backtrack()
query()

Fig. 3. Architecture of the change plan designer

Knowledge Base. In order to simulate the effects of Operators,
the Change Planner must be able to assert facts. In our object-
oriented model, this means creating new objects, creating or
changing dependencies between objects, and changing the
values of attributes of objects. Because the Change Planner is
implemented as a backtracking search (see Section IV-C), the
IT Knowledge Base must be able to snapshot its current state
and undo assertions. In other words, it must provide versioning
capabilities. At various steps in the design process, the Planner
must be able to verify if conditions are satisfied in order to
check what Operators and Methods are applicable. Hence, the
Knowledge Base must also provide a query mechanism that
returns tuples of objects matching a given search criterion.
Finally, it must detect causal dependencies between the effects
of Operators and the Conditions of Refinements to ensure that
the generated plans are temporally consistent. This last feature
is detailed in Section IV-D.

B. Change Catalogue Repository

The Change Catalogue repository stores the change template
and best practices model, or in HTN terms, the Tasks, Methods
and Operators, and their depending objects. This repository
is accessed by change requesters when they need to author
an RFC. We recognise that to make the change catalogue
easily accessible to requesters, change Tasks need to be
annotated and categorised, but this falls outside the scope of
this paper. The Change Catalogue repository is also accessed
by the Planner during the refinement process, and this simply
consist of navigating through the associations of the model,
for instance to find suitable Refinements for a given Task.

C. Change Planner

The Change Planner is the core component of the system
and uses a variation of the HTN planning algorithm. Its
input is a Task network specified by the change requester. By
exploring the space of possible decompositions for the list of
Tasks in a given state, the algorithm continuously decomposes
Tasks by replacing them by their sub-tasks as defined in the
decomposition Methods, until the initial set of goal Tasks is
transformed into a list of atomic Operators (then called a list of
actions or a plan), which is the algorithm’s output. The Planner
is tightly coupled with the IT Knowledge Base which acts as
the simulation environment for the planning algorithm: Effects

of Operators from partially refined workflows change the state
of the Knowledge Base, queries validate the applicability
of Methods and Operators and return variable bindings. A
formal description of the HTN algorithm is out of the scope
of this paper, since it is covered to great extent in the
automated planning literature [12]. We will concentrate on our
contributions which are to provide clear separation of concerns
between the various information repositories, the adaptation to
object-oriented models, and the consideration of duration and
temporal constraints.

The classical HTN formulation [12], [13] relies on first-
order logic to define Tasks, Methods and Operators; variable
bindings are found and passed by unification, the state of the
world is given by a set of atoms and preconditions and effects
are sets of literals. Because of the predominance of object-
oriented models for IT infrastructure and operations, such as
CIM, we do not express the infrastructure data model in terms
of first-order logic. Instead, we rely on the IT Knowledge
Base which can be queried to return all objects, such as
configuration items, matching a Method’s or an Operator’s
preconditions.

Our adoption of the classical non-deterministic partial-order
HTN algorithm is shown in Fig.4. Every recursive invocation
of the algorithm takes as input a reference to the current
state of the Knowledge Base (kb), the Task network (tn)
to be refined, and a set of variable bindings from previous
invocations. The algorithm picks a Task without predecessors
in tn (forward decomposition, line 3) for further decomposition
and chooses one of its applicable1 Refinements (lines 4,6) and
its respective variable bindings (line 7); one variable binding is
selected2 and added to the total set of bindings. If the selected
Refinement is an Operator, the refined Task is removed from
the Task network (line 11) and its effects are applied to the
Knowledge Base (line 10). Before recursively decomposing
the remaining Task network, the Temporal Reasoner and
Policy Engine components are invoked (lines 13, 14) to check
then preliminary plan’s temporal consistency and validity with
respect to policies. If both checks are successful, the Operator
is added to the plan (line 16). If on the other hand the chosen
Refinement is a Method, the respective Task is substituted
with the Method’s sub Tasks and the resulting Task network
is recursively decomposed (line 18).

A deterministic implementation of the algorithm searches
the whole space of possible decompositions by selecting a
refinement and backtracking in the case of a failure.

D. Temporal Reasoner

Real-world change plans consist of durative and parallel
activities, both features that are not supported by the classical
HTN formulation where plans are sequences of atomic actions.

1A Refinement is defined to be applicable in the current state of the
Knowledge Base if its precondition query has a non-zero number of matching
tuples in the Knowledge Base.

2Note that the concept of bindings does not increase the branching factor
when compared with classical HTN, as different bindings for Refinements
correspond to different possible substitutions in classical HTN.



1 function HTN(kb, tn)
2 if tn = ∅ then π ← empty plan; return true
3 t ← tn.getFirstTask()
4 refiners ← t.getApplicableRefiners(kb)
5 if refiners = ∅ then return false
6 r ← refiners.choose()
7 bindings ← r.computeBindings()
8 b ← bindings.choose()

9 if r is an operator then
10 kb.assert(r.getEffects(b))
11 tn.removeTask(t)
12 π.add(r)
13 if [TemporalReasoner.PathConsistency(π) and
14 PolicyEngine.Check(π)] then HTN(kb, tn)
15 else return false
16 else if r is a method then
17 r.decompose(tn, t, b)
18 if [TemporalReasoner.PathConsistency(π) and
19 PolicyEngine.Check(π)] then HTN(kb, tn)
20 else return false

Fig. 4. Non-deterministic algorithm for partial order forward decomposition
HTN planning with Knowledge Base and STN integration. Inputs: kb:
Knowledge Base, tn: goal Task network. Output: true and variable π stores a
solution plan, if one exists, false otherwise.

Total order plans may be acceptable for applications in which
the plan is executed in a sequential fashion (e.g. because all
actions have the same resource requirements and therefore
cannot be accomplished simultaneously) but not for change
plan design: we are seeking a change plan that conserves the
parallel structure of the workflow templates and only contains
additional ordering constraints where imposed by interactions
between effects and preconditions of Operators. For instance,
Operators accomplishing the Tasks InstallDatabase and In-
stallJ2eeContainer (Fig.6) are usually independent and should
remain temporally unconstrained if they effect different server
CIs (ws and ds) as in the depicted case. On the other hand, if
the database and J2EE container were chosen to be installed on
the same server, additional ordering constraints are necessary
to ensure that the installation activities do not come into
conflict with required resources.

In order to obtain plans with parallel branches and enhance
the planner with temporal reasoning capabilities for durative
actions, we have incorporated in our architecture a temporal
reasoning component which maintains a Simple Temporal
Problem (STP) data structure. An STP [20], [21] is a triple
(X,D,C) where X is a set of time point variables, D defines
the domain for every variable and C is the set of binary
constraints between time points. For STPs the path-consistency
algorithm is a sound and complete method [20], [21] to check
the consistency of the constraint problem and compute the
minimal equivalent constraint network.

As the change plan is being refined, temporal constraints are
added to the STP. Every plan π has an associated STP with
an initial time point, INIT, and for every Operator oi ∈ π
two additional time points, start(oi) and end(oi), representing
the start and the end of the respective Operator. Whenever
an Operator oi is added to the intermediate plan by the

HTN algorithm, a qualitative ordering constraint3 is posted
between oi and all previous Operators oj ∈ π, j < i whose
effects contribute to the preconditions of oi. To allow for this
mechanism, the Knowledge Base component must be able to
detect causal dependencies between preconditions and effects
on configuration items:
• A change record must be stored for every configuration

item, specifying when and by which Operator it was
changed

• The change record must be made available to the Planner
for every configuration item in a query result

Furthermore, every time a Task is decomposed, temporal
constraints between its sub-tasks and the remaining Tasks are
posted to enforce the parallel or sequential structure of the
workflow encoded in the decomposition Methods. A durative
action ai with duration d is encoded by the constraint [0, d]
between the time points start(ai) and end(ai), a Task T with
a deadline t generates the constraint [0, t] between the time
points INIT and end(T ).

After updating the STP with new time points or temporal
constraints, a path consistency algorithm [20], [21] can be
used to check the consistency of the STP and to compute
its equivalent minimal network. Checking the consistency of
the STP for every potentially new action in the preliminary
plan can be accomplished in O(n3) time and thus helps to
efficiently prune large chunks of the HTN search space and
ensures that all plans are temporally valid.

E. Policy Engine

In every planning step (Fig.4, line 14), the Planner asks
the Policy Engine if the intermediate change plan complies
with policies from the policy repository: policies on the IT
Operations Model or on the plan structure. Failure in the
validation of such policies causes the Planner to backtrack. The
benefit of this approach is that any off-the-shelf rule engine,
such as the Drools system, can be used as the Policy Engine.

V. VALIDATION

In this section, we first describe CHANGEREFINERY, a
working prototype based on the Java programming language
that demonstrates the feasability of the approach. We then
discuss qualitive and quantitative results we have obtained
from this prototype.

The IT Knowledge Base component implements the CIM-
based IT operations model and exposes the required interfaces
assert(), rollback() and query() (see Section IV-A) to the
Planner component. We use the Hibernate object-relational
persistence service to realise an object-oriented database for
configuration items. Queries against the Knowledge Base are
expressed in the Hibernate Query Language (HQL), whose
object-oriented query interface aligns nicely with inheritance-
based modelling concept of CIM.

The assert() and rollback() interfaces are implemented via
database snapshots: Every assertion triggers the creation of

3A qualitative ordering constraint between two actions, ai and aj , is posted
as a constraint [0,∞] between the time points end(ai) and start(aj).



Goal task: InstallLoadBalancedJ2eeApplication

InstallJ2eeContainer InstallApplication

InstallLoadBalancer
AddContainerToLb

Decomposition for sub task InstallApplication

InstallDatabase

DeployApplication
AddDbResourceToContainer

Decomposition for sub task InstallLoadBalancer

InstallLinuxImage InstallLbSoftware

WebServer ws

DbServer ds

DatabaseSystem dbs

Existing
IT Infrastructure

Change
templates

Fig. 5. Simplified example for change templates and IT infrastructure before plan execution

InstallJ2eeContainer

InstallDatabaseDeployApplication

AddDbResourceToContainer

InstallLinuxImage

InstallLbSoftware

AddContainerToLb

WebServer ws

J2eeContainer jc

LoadBalancer lb

J2eeApplication ja

DbServer ds

DatabaseSystem dbs

Database db

Updated
IT Infrastructure

Partially refined
change plan

Fig. 6. The goal Task InstallLoadBalancedJ2eeApplication (Fig.5) was refined by workflows for the Tasks InstallApplication and InstallLoadBalancer. The
integrated knowledge representation for workflows and IT infrastructure allows to compute the effects on the infrastructure as shown on the right side: The
existing CIs ws, ds, dbs are integrated with additional new configuration items which entered the Knowledge Base by virtue of effects of the refined sub-tasks.

new snapshot and every rollback reverts the database to a
previous state.

We use a backtracking implementation (see Fig.4) of the
partial-order forward decomposition HTN algorithm [12],
modified to support partial-order plans and temporal enhance-
ments by integration of an STP data structure as explained in
Section IV.

For the causality dependency checking between effects and
conditions, we have implemented a ”CI locking” technique. A
natural alternative approach to build such causal relationships
as proposed in [22] cannot be incorporated in our case,
because it relies on a logic language representation of the
state of world and makes assumptions that are too strong on
the representation of the Knowledege Base. Our pessimistic
configuration item locking scheme enforces that the Effects
of new Operators cannot invalidate the preconditions of any
previous Operator. This pessimistic solution has the merit
of being simple to implement and was adequate for our
experiments. Finer-grained locking to the level of associations
and attributes would require a deeper modeling of effects and
conditions and was out of the scope of this paper.

Regardingg the use of IT policies, we have experimented
with policies that affect CIs (e.g. the database server DbServer
can only be Oracle and it must run on a Windows 2003 or
HPUX 11i machine) and with policies that affect the change
process (e.g. an Approval step must be present for changes
that affect a business critical application). When the Change

Planner explores the change search space, it calls the Policy
Engine to filter out plans in which at least one IT Policy
is violated. In our current approach, we evaluate the whole
set of IT Policies at each step of the HTN planning process.
Performance problems may arise on large rule sets and one
may need to be more selective in the set policies that are
evaluated.

We now discuss qualitative and quantitative results we
have obtained from our experiments with CHANGEREFIN-
ERY. Using the proposed approach, we have successfully
modelled several real-life examples of change (installation,
migration and maintenance involving hardware and software
components). Throughout this paper, we have described the
simple case of installing a J2EE application (Fig.5 and Fig.6).
Allowing a choice of Methods and Operators for a single Task
has proved to be a very useful feature to express the variations
in changes based of various circumstances (security or avail-
ability requirements, hardware and software dependence).

In terms of quantitative results, we have run the planner
on examples including up to 50 tasks involving an IT in-
frastructure of up to 100 components. If the Change Planner
is left running in fully automated mode, without any user
intervention, it is capable of automatically generating plans
for realistic enterprise examples in the order of seconds or
minutes, depending on the size of the IT model. While auto-
matically generating change plans is useful for performance
and system testing, our goal is to assist an IT practitioner in



refining plans. The user interface of CHANGEREFINERY pro-
vides mixed-initiative interaction of the IT practitioner with the
planning system. At each step of the HTN planning process,
the user can let the planner exlore the search space and is
presented with the set of feasable decomposition Operators
or Methods for the refined Task. Also, when different sets of
variable bindings are returned from Knowledge Base queries,
the user can choose which binding she prefers. In this usage
model, we never observed computation greater than a few
seconds at each step of the planning process. Indeed, by
making decisions on Refinements and Bindings, the user is
prunning the search space, making the planning process easier.
In all our experiments, we observed that the Knowldge Base,
and in particular our database snapshot mechanism, was the
bottleneck. This problem would need to be addressed to be
able to scale to models of large enterprises and datacentres
with thoudands of configuration itemns.

VI. CONCLUSION AND FUTURE WORK

We have proposed a generic architecture for integrating
various information sources necessary for IT change design.
The Hierarchical Task Network planning paradigm augmented
with temporal constraints is used to model and hierarchically
refine change Tasks into consistent change plans, considering
the involved IT infrastructure and policies or constraints on
such plans.

By building a prototype and testing it with real-life exam-
ples, we have demonstrated the viability of the approach. To
substitute the IT Operations model of our prototype with real
IT Operations data sources (CMDB, service management or
asset management products) would require to solve several
information management problems, such as model mapping
and integration, and the ability to have a Knowledge Base
that scales to large data sets. Because of the mixed-initiative
nature of the solution, measuring the efficiency of the tool
(its speed for generating plans) is not the most significant
metric. Further validation would require to deploy the tool
in a live environment, and to measure its effectiveness, i.e. the
improvement of productivity of IT practitioners in designing
IT changes and the improvement of quality of the IT plans.

Our immediate next steps are to introduce decision-support
features in our mixed-initiative scenario. In this paper, an IT
practitioner guides the design of the change plans by choosing
Refinements and variable bindings. While we still want to
leave the decision to the human operator, we would like to
assist her in making the best choices by presenting her metrics,
such as time, cost or risk, and to help her understand the trade-
offs of various change designs.

Finally, we also intend to expand the proposed solution
in two ways. First we will investigate the feasibility of a
hybrid planning approach, i.e. interleaved state-space and HTN
planning, to be able to reason on incomplete domain knowl-
edge. We will also study how our solution can be combined
with proposed change scheduling solutions (see section II)
and how to resolve temporal and resource constraints into
implementation schedules.

ACKNOWLEDGMENT

The authors would like to thank C. Bartolini, W. Cordeiro
and A. Boulmakoul for valuable comments and suggestions.

REFERENCES

[1] IT Infrastructure Library. Office of Government Commerce, UK, 2003.
[2] D. Dubie, “Itil adoption increases in u.s., proficiency still

lacking.” [Online]. Available: http://www.networkworld.com/news/2008/
022908-itil-adoption.html

[3] R. Rebouças, R. Santos, J. Sauvé, and A. Moura, “The HP-Bottom Line
Project, IT Change Management Challenges - Results of 2006 Web
Survey, Technical Report DSC005-06,” Computing Systems Department,
Federal University of Campina Grande, Brazil, Tech. Rep., 2006.

[4] IT Infrastructure Library, ”ITIL Service Transition”. Office of Gov-
ernment Commerce, UK, 2003.

[5] A. Keller, J. Hellerstein, J. Wolf, K. Wu, and V. Krishnan, “The
CHAMPS System: Change Management with Planning and Scheduling,”
in 9th IEEE/IFIP Network Operations and Management Symposium
(NOMS). IEEE, 2004, pp. 395–408.

[6] W. Cordeiro, G. Machado, F. Daitx, C. Both, L. Gaspary, L. Granville,
A. Sahai, C. Bartolini, D. Trastour, and K. Saikoski, “A Template-based
Solution to Support Knowledge Reuse in IT Change Design,” in 11th
IEEE/IFIP Network Operations and Management Symposium (NOMS).
IEEE, 2008, pp. 355–362.

[7] J. P. Sauvé, R. Rebouças, A. Moura, C. Bartolini, A. Boulmakoul, and
D. Trastour, “Business-driven decision support for change management:
Planning and scheduling of changes,” in 17th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management
(DSOM). Springer, 2006, pp. 173–184.

[8] R. Rebouças, J. P. Sauvé, A. Moura, C. Bartolini, and D. Trastour, “A
decision support tool to optimize scheduling of it changes,” in 10th
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2007, pp. 343–352.

[9] D. Trastour, M. Rahmouni, and C. Bartolini, “Activity-based scheduling
of it changes,” in International Conference on Autonomous Infrastruc-
ture, Management and Security (AIMS). Springer, 2007, pp. 73–84.

[10] T. Setzer, K. Bhattacharya, and H. Ludwig, “Decision support for service
transition management,” in IEEE Network Operations and Management
Symposium (NOMS), 2008.

[11] L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: A policy-
based design tool,” in 7th IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY 2006). IEEE Computer
Society, 2006, pp. 113–122.

[12] D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory &
Practice. Morgan Kaufmann Publishers Inc., 2004.

[13] K. Erol, J. Hendler, and D. S. Nau, “Htn planning: Complexity and
expressivity,” in Twelfth National Conference on Artificial Intelligence
(AAAI-94). AAAI Press/MIT Press, 1994, pp. 1123–1128.

[14] T. Estlin, R. Castano, R. Anderson, D. Gaines, F. Fisher, and M. Judd,
“Learning and Planning for Mars Rover Science,” in IJCAI 2003
workshop notes on Issues in Designing Physical Agents for Dynamic
Real-Time Environments, 2003.

[15] J. Fernández-Olivares, L. A. Castillo, Ó. Garcı́a-Pérez, and F. Palao,
“Bringing users and planning technology together. experiences in
siadex,” in Sixteenth International Conference on Automated Planning
and Scheduling (ICAPS). AAAI, 2006, pp. 11–20.

[16] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmunarunkit,
“Artificial intelligence and grids: Workflow planning and beyond,” IEEE
Intelligent Systems, vol. 19, no. 1, pp. 26–33, 2004.

[17] B. Srivastava, J. Vanhatalo, and J. Koehler, “Managing the life cycle of
plans,” in AAAI, M. M. Veloso and S. Kambhampati, Eds. AAAI Press
/ The MIT Press, 2005, pp. 1569–1575.

[18] “Common Information Model (CIM),” Distributed Management Task
Force, 2007. [Online]. Available: http://www.dmtf.org/standards/cim/

[19] “RuleML.” [Online]. Available: http://www.ruleml.org/
[20] R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Networks,”

Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.
[21] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.
[22] L. A. Castillo, J. Fernández-Olivares, Ó. Garcı́a-Pérez, and F. Palao,

“Efficiently handling temporal knowledge in an htn planner,” in Six-
teenth International Conference on Automated Planning and Scheduling
(ICAPS). AAAI, 2006, pp. 63–72.


